Q1	$\mathrm{f}(\mathrm{x})=k(1-x) \quad 0 \leq x \leq 1$			
(i)	$\begin{aligned} & \int_{0}^{1} k(1-x) \mathrm{d} x=1 \\ & \therefore k\left[x-\frac{1}{2} x^{2}\right]_{0}^{1}=1 \\ & \therefore k\left(1-\frac{1}{2}\right)-0=1 \\ & \therefore k=2 \end{aligned}$ Labelled sketch: straight line segment from $(0,2)$ to $(1,0)$.	M1 E1 G1 G1	Integral of $f(x)$, including limits (possibly implied later), equated to 1 . Convincingly shown. Beware printed answer. Correct shape. Intercepts labelled.	4
(ii)	$\begin{aligned} \mathrm{E}(X) & =\int_{0}^{1} 2 x(1-x) \mathrm{d} x \\ & =\left[x^{2}-\frac{2}{3} x^{3}\right]_{0}^{1}=\left(1-\frac{2}{3}\right)-0=\frac{1}{3} \\ \mathrm{E}\left(X^{2}\right) & =\int_{0}^{1} 2 x^{2}(1-x) \mathrm{d} x \\ & =\left[\frac{2}{3} x^{3}-\frac{2}{4} x^{4}\right]_{0}^{1}=\left(\frac{2}{3}-\frac{1}{2}\right)-0=\frac{1}{6} \\ \operatorname{Var}(X) & =\frac{1}{6}-\left(\frac{1}{3}\right)^{2} \\ & =\frac{1}{18} \end{aligned}$	M1 A1 M1 M1 A1	Integral for $\mathrm{E}(X)$ including limits (which may appear later). Integral for $\mathrm{E}\left(X^{2}\right)$ including limits (which may appear later). Convincingly shown. Beware printed answer.	5
(iii)	$\begin{aligned} & \mathrm{F}(x)=\int_{0}^{x} 2(1-t) \mathrm{d} t \\ & \\ & =\left[2 t-t^{2}\right]_{0}^{x}=\left(2 x-x^{2}\right)-0=2 x-x^{2} \\ & \begin{aligned} \mathrm{P}(X>\mu) & =\mathrm{P}\left(X>\frac{1}{3}\right)=1-\mathrm{F}\left(\frac{1}{3}\right) \\ & =1-\left(2 \times \frac{1}{3}-\left(\frac{1}{3}\right)^{2}\right)=1-\frac{5}{9}=\frac{4}{9} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Definition of cdf, including limits, possibly implied later. Some valid method must be seen. [for $0 \leq x \leq 1$; do not insist on this.] For 1 - c's $\mathrm{F}(\mu)$. ft c's $E(X)$ and $F(x)$. If answer only seen in decimal expect 3 d.p. or better.	4
(iv)	$\begin{aligned} F\left(1-\frac{1}{\sqrt{2}}\right) & =2\left(1-\frac{1}{\sqrt{2}}\right)-\left(1-\frac{1}{\sqrt{\sqrt{2}}}\right)^{2} \\ & =2-\frac{2}{\sqrt{2}}-1+\frac{2}{\sqrt{2}}-\frac{1}{2}=\frac{1}{2} \end{aligned}$ Alternatively: $\begin{aligned} & 2 m-m^{2}=\frac{1}{2} \\ & \therefore m^{2}-2 m+\frac{1}{2}=0 \\ & \therefore m=1 \pm \frac{1}{\sqrt{2}} \end{aligned}$ so $m=1-\frac{1}{\sqrt{2}}$	M1 E1 M1 E1	Substitute $m=1-\frac{1}{\sqrt{2}}$ in C's cdf. Convincingly shown. Beware printed answer. Form a quadratic equation $\mathrm{F}(m)=\frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic. Convincingly shown. Beware printed answer.	2
(v)	$\bar{X} \sim \mathrm{~N}\left(\frac{1}{3}, \frac{1}{1800}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Normal distribution. Mean. ft c's $\mathrm{E}(X)$. Correct variance.	3
				18

Q2				
(i)	$\mathrm{H}_{0}: \mu=0.6$ $\mathrm{H}_{1}: \mu<0.6$ Where μ is the (population) mean height of the saplings. $\bar{x}=0.5883, s_{n-1}=0.03664 \quad\left(s_{n-1}^{2}=0.00134\right)$ Test statistic is $\frac{0 \cdot 5883-0 \cdot 6}{\left(\frac{0 \cdot 03664}{\sqrt{12}}\right)}$ $=-1 \cdot 103$ Refer to t_{11}. Lower 5\% point is -1.796 . $-1.103>-1.796, \therefore$ Result is not significant. Seems mean height of saplings meets the manager's requirements. Underlying population is Normal.	B1 B1 B1 B1 M1 A1 M1 A1 E1 E1 B1	Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=$..." or similar unless \bar{X} is clearly and explicitly stated to be a population mean. Hypotheses in words only must include "population". Do not allow $s_{n}=0.03507\left(s_{n}{ }^{2}=\right.$ 0.00123). Allow c's \bar{x} and/or s_{n-1}. Allow alternative: $0.6 \pm$ (c's $1.796) \times \frac{0.03664}{\sqrt{12}}(=0.5810$, 0.6190) for subsequent comparison with \bar{x}. (Or $\bar{x} \pm\left(c^{\prime} s-1.796\right) \times \frac{0.03664}{\sqrt{12}}$ ($=0.5693,0.6073$) for comparison with 0.6.) c.a.o. but ft from here in any case if wrong. Use of $0.6-\bar{x}$ scores M1AO, but ft. No ft from here if wrong. No ft from here if wrong. Must be -1.796 unless it is clear that absolute values are being used. ft only c's test statistic. ft only c's test statistic.	11
(ii)	$\begin{aligned} & \text { CI is given by } 0.5883 \pm \\ & \quad 2.201 \\ & \quad \times \frac{0.03664}{\sqrt{12}} \\ & \quad=0.5883 \pm 0.0233=(0.565(0), 0.611(6)) \end{aligned}$	M1 B1 M1 A1	ft c's $\bar{x} \pm$. ft c's s_{n-1}. c.a.o. Must be expressed as an interval. ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{11} is OK.	

	In repeated sampling, 95\% of intervals constructed in this way will contain the true population mean.	E1		5
(iii)	Could use the Wilcoxon test. Null hypothesis is "Median $=0.6 "$.	E1		
				2

Q3	$\begin{aligned} & M \sim N\left(44,4.8^{2}\right) \\ & H \sim N\left(32,2 \cdot 6^{2}\right) \\ & P \sim N\left(21,3 \cdot 7^{2}\right) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.	
(i)	$\begin{array}{r} \mathrm{P}(M<50)=\mathrm{P}\left(Z<\frac{50-44}{4 \cdot 8}=1.25\right) \\ =0.8944 \end{array}$	M1 A1 A1	For standardising. Award once, here or elsewhere.	3
(ii)	$\begin{aligned} & H+P \sim \mathrm{~N}(32+21=53 \\ & \left.2.6^{2}+3.7^{2}=20.45\right) \\ & \mathrm{P}(H+P<50)=P\left(Z<\frac{50-53}{\sqrt{20 \cdot 45}}=-0.6634\right) \\ & =1-0.7465=0.2535 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd $=\sqrt{ } 20 \cdot 45=$ 4.522... c.a.o.	3
(iii)	Want $\mathrm{P}(M>H+P)$ i.e. $\mathrm{P}(M-(H+P)>0)$ $\begin{aligned} M-(H+P) \sim \mathrm{N}(44-(32+21)=-9 \\ 4 \cdot 8^{2}+2 \cdot 6^{2}+3 \cdot 7^{2}= \end{aligned}$ 43.49) $\begin{aligned} P(\text { this }>0) & =P\left(Z>\frac{0-(-9)}{\sqrt{43 \cdot 49}}=1.365\right) \\ & =1-0.9139=0.0861 \end{aligned}$	M1 B1 B1 A1	Allow $H+P-M$ provided subsequent work is consistent. Mean. Variance. Accept sd $=\sqrt{ } 43 \cdot 49=$ 6.594... c.a.o.	4
(iv)	$\begin{aligned} & \text { Mean }=44+44+32+32+21+21 \\ & \quad=194 \\ & \text { Variance }=4 \cdot 8^{2}+4 \cdot 8^{2}+2 \cdot 6^{2}+2 \cdot 6^{2}+3 \cdot 7^{2}+ \\ & 3 \cdot 7^{2}=86.98 \end{aligned}$	B1 B1	(sd = 9.3263...)	2
(v)	$\begin{aligned} & C \sim \mathrm{~N}(194 \times 0 \cdot 15+10=39 \cdot 10 \\ & \left.86 \cdot 98 \times 0 \cdot 15^{2}=1 \cdot 957\right) \\ & \begin{array}{r} P(C \leq 40)=P\left(Z \leq \frac{40-39 \cdot 10}{\sqrt{1 \cdot 957}}=0.6433\right) \\ =0.7400 \end{array} \end{aligned}$ Alternatively: $\mathrm{P}(C \leq 40)=\mathrm{P}\left(\text { total time } \leq \frac{40-10}{0.15}=200\right.$ minutes) $=\mathrm{P}\left(Z \leq \frac{200-194}{\sqrt{86 \cdot 98}}=0.6433\right)$	M1 M1 A1 M1 A1 A1 M1 M1 A1 M1 A1	```c's mean in (iv) }\times0.1 +10 (or subtract 10 from 40 below) ft c's mean in (iv). c's variance in (iv) }\times0.1\mp@subsup{5}{}{2 ft c's variance in (iv). c.a.o. -10 \div0.15 c.a.o.``` Correct use of c's variance in (iv). ft c's mean and variance in (iv).	6

	$=0.7400$	A1	c.a.o.	
				18

Q4					
(a)	Obs Exp 10 6.68$\begin{aligned} & \therefore X^{2}=\frac{(10-6 \cdot 68)^{2}}{6 \cdot 68}+\text { etc } \\ & =1 \cdot 6501+1.7740+3.3203+4.5018+ \\ & 0.4015+0.8135 \\ & =12 \cdot 46(12) \end{aligned}$$\text { d.o.f. }=6-3=3$ Refer to χ_{3}^{2}. Upper 5\% point is 7.815 $12.46>7.815 \quad \therefore$ Result is significant. Seems the Normal model does not fit the data at the 5% level. E.g. - The biggest discrepancy is in the class $1.01<a \leq 1.02$ - The model overestimates in classes ..., but underestimates in classes ...	M1 M1 A1 M1 A1 E1 E1 E1 E1	Combine first two rows. Require d.o.f. $=$ No. cells used 3. No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Any two suitable comments.	9	
(b)	$\begin{array}{lrrrrr}\text { Old - New: } & 0.007 & 0.002 & -0.001 & -0.003 & 0.004 \\ \text { Rank of \|diff\| } & 6 & 2 & 1 & 3 & 4\end{array}$ $W_{+}=6+2+4+8=20$ Refer to Wilcoxon single sample (/paired) tables for $n=10$. Lower two-tail 10\% point is ... $\text { ... } 10 .$ $20>10 \therefore$ Result is not significant. Seems there is no reason to suppose the barometers differ.	$\begin{aligned} & \left.\begin{array}{r} -0.008 \\ 7 \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { E1 } \\ \text { E1 } \end{array} \right\rvert\, \end{aligned}$	$\begin{array}{rrrr} -0.010 & 0.009 & -0.005 & -0.016 \\ 9 & 8 & 5 & 10 \end{array}$ For differences. ZERO in this section if differences not used. For ranks of \|difference	. All correct. ft from here if ranks wrong. $\begin{aligned} & \text { Or } W_{-}=1+3+7+9+5+10 \\ & =35 \end{aligned}$ No ft from here if wrong. Or, if 35 used, upper point is 45 . No ft from here if wrong. Or $35<45$. ft only c's test statistic. ft only c's test statistic.	9
				18	

